399 research outputs found

    The Direct and Enantioselective Organocatalytic α-Oxidation of Aldehydes

    Get PDF
    The first direct enantioselective catalytic α-oxidation of carbonyls has been accomplished. The use of enamine catalysis has provided a new organocatalytic strategy for the enantioselective oxyamination of aldehydes, to generate α-oxyaldehydes, important chiral synthons for natural product and medicinal agent synthesis. The use of l-proline as the asymmetric catalyst has been found to mediate the oxidation of a large variety of aldehyde substrates with nitrosobenzene serving as the electrophilic oxidant. A diverse spectrum of aldehyde substrates can also be accommodated in this new organocatalytic transformation. While catalyst quantities of 2 mol % were generally employed in this study, successful oxidations conducted using catalyst loadings as low as 0.5 mol % are described

    Verification of Item Usage Rules in Product Configuration

    Get PDF
    In the development of complex products product configuration systems are often used to support the development process. Item Usage Rules (IURs) are conditions for including specific items in products bills of materials based on a high-level product description. Large number of items and significant complexity of IURs make it difficult to maintain and analyze IURs manually. In this paper we present an automated approach for verifying IURs, which guarantees the presence of exactly one item from a predefined set in each product, as well as that an IUR can be reformulated without changing the set of products for which the item was included

    On Optimization Modulo Theories, MaxSMT and Sorting Networks

    Full text link
    Optimization Modulo Theories (OMT) is an extension of SMT which allows for finding models that optimize given objectives. (Partial weighted) MaxSMT --or equivalently OMT with Pseudo-Boolean objective functions, OMT+PB-- is a very-relevant strict subcase of OMT. We classify existing approaches for MaxSMT or OMT+PB in two groups: MaxSAT-based approaches exploit the efficiency of state-of-the-art MAXSAT solvers, but they are specific-purpose and not always applicable; OMT-based approaches are general-purpose, but they suffer from intrinsic inefficiencies on MaxSMT/OMT+PB problems. We identify a major source of such inefficiencies, and we address it by enhancing OMT by means of bidirectional sorting networks. We implemented this idea on top of the OptiMathSAT OMT solver. We run an extensive empirical evaluation on a variety of problems, comparing MaxSAT-based and OMT-based techniques, with and without sorting networks, implemented on top of OptiMathSAT and {\nu}Z. The results support the effectiveness of this idea, and provide interesting insights about the different approaches.Comment: 17 pages, submitted at Tacas 1

    Generalized Totalizer Encoding for Pseudo-Boolean Constraints

    Full text link
    Pseudo-Boolean constraints, also known as 0-1 Integer Linear Constraints, are used to model many real-world problems. A common approach to solve these constraints is to encode them into a SAT formula. The runtime of the SAT solver on such formula is sensitive to the manner in which the given pseudo-Boolean constraints are encoded. In this paper, we propose generalized Totalizer encoding (GTE), which is an arc-consistency preserving extension of the Totalizer encoding to pseudo-Boolean constraints. Unlike some other encodings, the number of auxiliary variables required for GTE does not depend on the magnitudes of the coefficients. Instead, it depends on the number of distinct combinations of these coefficients. We show the superiority of GTE with respect to other encodings when large pseudo-Boolean constraints have low number of distinct coefficients. Our experimental results also show that GTE remains competitive even when the pseudo-Boolean constraints do not have this characteristic.Comment: 10 pages, 2 figures, 2 tables. To be published in 21st International Conference on Principles and Practice of Constraint Programming 201

    Pedicle Screw-Associated Violation of the Adjacent Unfused Facet Joint: Clinical Outcomes and Fusion Rates

    Get PDF
    STUDY DESIGN: Retrospective review of a prospective randomized trial. OBJECTIVES: To compare outcome scores and fusion rates in patients with and without pedicle screw-associated facet joint violation (FJV) after a single-level lumbar fusion. METHODS: Clinical outcomes data and computed tomography (CT) imaging were reviewed for 157 patients participating in a multicenter prospective trial. Post-operative CT scans at 12-months follow-up were examined for fusion status and FJV. Patient-reported outcomes (PROs) included Oswestry Disability Index (ODI) and Visual Analog Scale (VAS) for leg and low back pain. Chi-square test of independence was used to compare proportions between groups on categorical measures. Two-sample t-test was used to identify differences in mean patient outcome scores. Logistic regression models were performed to determine association between FJV and fusion rates. RESULTS: Of the 157 patients included, there were 18 (11.5%) with FJV (Group A) and 139 (88.5%) without FJV (Group B). Patients with FJV experienced less improvement in ODI (P = .004) and VAS back pain scores (P = .04) vs patients without FJV. There was no difference in mean VAS leg pain (P = .4997). The rate of fusion at 12-months for patients with FJV (27.8%) was lower compared to those without FJV (71.2%) (P = .0002). Patients with FJV were 76% less likely to have a successful fusion at 12-months. CONCLUSION: Pedicle screw-associated violation of the adjacent unfused facet joint during single-level lumbar fusion is associated with less improvement in back pain, back pain-associated disability, and a lower fusion rate at 1-year after surgery

    Efficient Certified Resolution Proof Checking

    Get PDF
    We present a novel propositional proof tracing format that eliminates complex processing, thus enabling efficient (formal) proof checking. The benefits of this format are demonstrated by implementing a proof checker in C, which outperforms a state-of-the-art checker by two orders of magnitude. We then formalize the theory underlying propositional proof checking in Coq, and extract a correct-by-construction proof checker for our format from the formalization. An empirical evaluation using 280 unsatisfiable instances from the 2015 and 2016 SAT competitions shows that this certified checker usually performs comparably to a state-of-the-art non-certified proof checker. Using this format, we formally verify the recent 200 TB proof of the Boolean Pythagorean Triples conjecture

    Comprehensive vascular imaging using optical coherence tomography-based angiography and photoacoustic tomography

    Get PDF
    Studies have proven the relationship between cutaneous vasculature abnormalities and dermatological disorders, but to image vasculature noninvasively in vivo, advanced optical imaging techniques are required. In this study, we imaged a palm of a healthy volunteer and three subjects with cutaneous abnormalities with photoacoustic tomography (PAT) and optical coherence tomography with angiography extension (OCTA). Capillaries in the papillary dermis that are too small to be discerned with PAT are visualized with OCTA. From our results, we speculate that the PA signal from the palm is mostly from hemoglobin in capillaries rather than melanin, knowing that melanin concentration in volar skin is significantly smaller than that in other areas of the skin. We present for the first time OCTA images of capillaries along with the PAT images of the deeper vessels, demonstrating the complementary effective imaging depth range and the visualization capabilities of PAT and OCTA for imaging human skin in vivo. The proposed imaging system in this study could significantly improve treatment monitoring of dermatological diseases associated with cutaneous vasculature abnormalities

    On Tackling the Limits of Resolution in SAT Solving

    Full text link
    The practical success of Boolean Satisfiability (SAT) solvers stems from the CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a propositional proof complexity perspective, CDCL is no more powerful than the resolution proof system, for which many hard examples exist. This paper proposes a new problem transformation, which enables reducing the decision problem for formulas in conjunctive normal form (CNF) to the problem of solving maximum satisfiability over Horn formulas. Given the new transformation, the paper proves a polynomial bound on the number of MaxSAT resolution steps for pigeonhole formulas. This result is in clear contrast with earlier results on the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper also establishes the same polynomial bound in the case of modern core-guided MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard for CDCL SAT solvers, show that these can be efficiently solved with modern MaxSAT solvers
    corecore